瞬时受体电位离子通道4及其在纤维化疾病中的研究进展

赵士峰, 许文萱, 张自力, 张峰, 吴丽, 陆茵, 郑仕中

中国药学杂志 ›› 2015, Vol. 50 ›› Issue (24) : 2095-2098.

PDF(553 KB)
PDF(553 KB)
中国药学杂志 ›› 2015, Vol. 50 ›› Issue (24) : 2095-2098. DOI: 10.11669/cpj.2015.24.001
综述

瞬时受体电位离子通道4及其在纤维化疾病中的研究进展

  • 赵士峰1,2, 许文萱1,2, 张自力1,2, 张峰1,2, 吴丽1,2, 陆茵1,2, 郑仕中1,2*
作者信息 +

Role and Research Progress of TRPV4 in the Pathogenesis of Fibrosis Diseases

  • ZHAO Shi-feng1, 2, XU Wen-xuan1, 2, ZHANG Zi-li1,2, ZHANG Feng1,2, WU Li1,2, LU Yin1, 2, ZHENG Shi-zhong1, 2*
Author information +
文章历史 +

摘要

对近年来关于瞬时受体电位离子通道4(transient receptor potential vanilloid 4,TRPV4)在纤维化疾病中的作用及相关机制研究做整理分析。瞬时受体电位离子通道4为一类非选择性阳离子通道蛋白,参与细胞内二价阳离子,主要是Ca2+的稳态调控,广泛参与多种脏器纤维化发生发展过程。瞬时受体电位离子通道4在纤维化预防与治疗过程中具有重要作用,但其具体作用机制不明,有待进一步深入研究。

Abstract

To analyze recent studies on the role of transient receptor potential vanilloid 4(TRPV4) in fibrosis diseases and related mechanism. TRPV4 is a class of non-selective cation channel protein, which involved in intracellular divalent cations, mainly regulate Ca2+ homestasis and participate in the development of multiple organ fibrosis broadly. TRPV4 plays an important role in the prevention and treatment of fibrosis diseases. But for its complex mechanism of action, further research needs to be studied.

关键词

瞬时受体电位 / 瞬时受体电位离子通道4 / 纤维化 / 细胞外基质 / 转化生长因子-β

Key words

transient receptor potential / transient receptor potential vanilloid 4 / fibrosis / extracellular matrix (ECM) / TGF-β

引用本文

导出引用
赵士峰, 许文萱, 张自力, 张峰, 吴丽, 陆茵, 郑仕中. 瞬时受体电位离子通道4及其在纤维化疾病中的研究进展[J]. 中国药学杂志, 2015, 50(24): 2095-2098 https://doi.org/10.11669/cpj.2015.24.001
ZHAO Shi-feng, XU Wen-xuan, ZHANG Zi-li, ZHANG Feng, WU Li, LU Yin, ZHENG Shi-zhong. Role and Research Progress of TRPV4 in the Pathogenesis of Fibrosis Diseases[J]. Chinese Pharmaceutical Journal, 2015, 50(24): 2095-2098 https://doi.org/10.11669/cpj.2015.24.001
中图分类号: R965   

参考文献

[1] TANABE K, TAURA K, KOYAMA Y, et al. Migration of splenic lymphocytes promotes liver fibrosis through modification of T helper cytokine balance in mice[J]. J Gastroenterol, 2015,50(10):1054-1068.
[2] BAO Z, ZHANG Q, WAN H, et al. Expression of suppressor of cytokine signaling 1 in the peripheral blood of patients with idiopathic pulmonaryfibrosis[J]. Chin Med J(中华医学杂志英文版), 2014,127(11):2117-2120.
[3] CHEN L Y, JIN H H, CHEN Q, et al. Progress of sphingosine-1-phosphate in the pathogenesis of liver fibrosis[J]. Chin Pharm J(中国药学杂志), 2014,49(15):1281-1284.
[4] ECHEVERRA C, MONTORFANO I, HERMOSILLA T, et al. Endotoxin induces fibrosis in vascular endothelial cells through a mechanism dependent on transient receptor protein melastatin 7 activity[J]. PLoS One, 2014,9(4): e94146.
[5] GARRATT L W, SUTANTO E N, LING K M, et al. Matrix metalloproteinase activation by free neutrophil elastase contributes to bronchiectasis progression in early cystic fibrosis[J]. Eur Respir J, 2015,46(2):384-394.
[6] SONG Y, ZHAN L, YU M, et al. TRPV4 channel inhibits TGF-β1-induced proliferation of hepatic stellate cells[J]. PLoS One, 2014,9(7): e101179.
[7] ZHAN L, YANG Y, MA T T, et al. Transient receptor potential vanilloid 4 inhibits rat HSC-T6 apoptosis through induction of autophagy[J]. Mol Cell Biochem, 2015,402(1-2):9-22.
[8] RAHAMAN S O, GROVE L M, SOUTHERN B D, et al. Role of cation channel TRPV4 in mechanosensing, myofibroblast differentiation, and pulmonary fibrosis[J]. Ann Am Thorac Soc,2015,12(suppl 1):74-75.
[9] YANG M, ZHENG J, MIAO Y, et al. Serum-glucocorticoid regulated kinase 1 regulates alternatively activated macrophage polarization contributing to angiotensin II-induced inflammation and cardiac fibrosis[J]. Arterioscler Thromb Vasc Biol, 2012,32(7):1675-1686.
[10] FUSI C, MATERAZZI S, MINOCCI D, et al. Transient receptor potential vanilloid 4 (TRPV4) is downregulated in keratinocytes in human non-melanoma skin cancer[J]. J Invest Dermatol, 2014,134(9):2408-2417.
[11] LIEDTKE W, CHOE Y, MARTí-RENOM M A, et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor[J]. Cell, 2000,103(3):525-535.
[12] SHIGEMATSU H, SOKABE T, DANEV R, et al. A 3.5-nm structure of rat TRPV4 cation channel revealed by zernike phase-contrast cryoelectron microscopy[J]. J Biol Chem, 2010,285(15):11210-11218.
[13] DUNN K M, HILL-EUBANKS D C, LIEDTKE W B, et al. TRPV4 channels stimulate Ca2+-induced Ca2+ release in astrocytic endfeet and amplify neurovascular coupling responses[J]. Proc Natl Acad Sci USA, 2013,110(15):6157-6162.
[14] EVERAERTS W, NILIUS B, OWSIANIK G. The vanilloid transient receptor potential channel TRPV4: From structure to disease[J]. Prog Biophys Mol Biol, 2010,103(1):2-17.
[15] SHI M, DU F, LIU Y, et al. Glial cell-expressed mechanosensitive channel TRPV4 mediates infrasound-induced neuronal impairment[J]. Acta Neuropathol, 2013,126(5):725-739.
[16] GOSWAMI C, KUHN J, HEPPENSTALL P A, et al. Importance of non-selective cation channel TRPV4 interaction with cytoskeleton and their reciprocal regulationsin cultured cells[J]. PLoS One, 2010,5(7):e11654.
[17] SHIN S H, LEE E J, HYUN S, et al. Phosphorylation on the Ser 824 residue of TRPV4 prefers to bind with F-actin than with microtubules to expand the cell surface area[J]. Cell Signal, 2012,24(3):641-651.
[18] LEE E J, SHIN S H, HYUN S, et al. Mutation of a putative S-nitrosylation site of TRPV4 protein facilitates the channel activates[J]. Animal Cells Syst (Seoul), 2011,15(2):95-106.
[19] FENG S, RODAT-DESPOIX L, DELMAS P, et al. A single amino acid residue constitutes the third dimerization domain essential for the assembly and function of the tetrameric polycystin-2 (TRPP2) channel[J]. J Biol Chem, 2011,286(21):18994-19000.
[20] CENI E, MELLO T, GALLI A. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism[J]. World J Gastroenterol, 2014,20(47):17756-17772.
[21] LU C F, WU X F, LIAN N Q, et al. Research progress in role and mechanism of endogenous cannabinoid system in hepatic disease[J]. Chin Pharm J(中国药学杂志), 2014,49(2):89-93.
[22] ZHANG X, HAN X, YIN L, et al. Potent effects of dioscin against liver fibrosis[J]. Sci Rep, 2015,5:9713.
[23] HE Y, HUANG C, SUN X, et al. MicroRNA-146a modulates TGF-beta1-induced hepatic stellate cell proliferation by targeting SMAD4[J]. Cell Signal, 2012,24(10):1923-1930.
[24] CUSHING L, KUANG P, L J. The role of miR-29 in pulmonary fibrosis[J]. Biochem Cell Biol, 2015,93(2):109-118.
[25] RYAN J J, HUSTON J, KUTTY S, et al. Right ventricular adaptation and failure in pulmonary arterial hypertension[J]. Can J Cardiol, 2015,31(4):391-406.
[26] RAGHU G, COLLARD H R, EGAN J J, et al. An official ATS/ERS/JRS/ALAT statement:Idiopathic pulmonary fibrosis: Evidence-based guidelines for diagnosis and management[J]. Am J Respir Crit Care Med, 2011,183(6):788-824.
[27] LEY B, COLLARD H R. Epidemiology of idiopathic pulmonary fibrosis[J]. Clin Epidemiol, 2013,5:483-492.
[28] RAHAMAN S O, GROVE L M, SOUTHERN B D, et al. Role of cation TRPV4 in mechanosensing, myofibroblast differentiation, and pulmonary fibrosis[J]. Ann Am Thorac Soc, 2015,12(suppl 1):74-75.
[29] RAHAMAN S O, GROVE L M, PARUCHURI S, et al. TRPV4 Mediates myofibroblast differentiation and pulmonary fibrosis in mice[J]. J Clin Invest, 2014,124(12):5225-5238.
[30] VINCENT F, DUNCTON M A. TRPV4 Agonists and antagonists[J]. Curr Top Med Chem, 2011,11(17):2216-2226.
[31] SEMINARIO-VIDAL L, OKADA S F, SESMA J I, et al. Rho signaling regulates pannexin 1-mediated ATP release from airway epithelia[J]. J Biol Chem, 2011,286(30):26277-26286.
[32] DING X L, WANG Y H, NING L P, et al. Involvement of TRPV4-NO-cGMP-PKG pathways in the development of thermal hyperalgesia following chronic compression of the dorsal root ganglion in rats[J]. Behav Brain Res, 2010,208(1):194-201.
[33] SUN M, CHEN M, DAWOOD F, et al. Tumor necrosis factor-alpha mediates cardiac remodeling and ventricular dysfunction after pressure overload state[J]. Circulation, 2007,115(11):1398-1407.
[34] LANG F, STOURNARAS C, ALESUTAN I. Regulation of transport across cell membranes by the serum- and glucocorticoid-inducible kinase SGK1[J]. Mol Membr Biol, 2014,31(1):29-36.
[35] GRAND T, SALVARANI N, JOUSSET F, et al. Aggravation of cardiac myofibroblast arrhythmogeneicity by mechanical stress[J]. Cardiovasc Res, 2014,104(3):489-500.
[36] STROTMANN R, HARTENECK C, NUNNENMACHER K, et al. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity[J]. Nat Cell Biol, 2000,2(10):695-702.
[37] INOUE R, JENSEN L J, SHI J, et al. Transient receptor potential channels in cardiovascular function and disease[J]. Circ Res, 2006,99(2):119-131.
[38] ZHAO L, SULLIVAN M N, CHASE M, et al. Calcineurin/nuclear factor of activated T cells-coupled vanilliod transient receptor potential channel 4 Ca2+ sparklets stimulate airway smooth muscle cell proliferation[J]. Am J Respir Cell Mol Biol, 2014,50(6):1064-1075.
[39] YANG M, ZHENG J, MIAO Y, et al. Serum-glucocorticoid regulated kinase 1 regulates alternatively activated macrophage polarization contributing to angiotensin II-induced inflammation and cardiac fibrosis[J]. Arterioscler Thromb Vasc Biol, 2012,32(7):1675-1686.
[40] QU X, ZHANG X, YAO J, et al. Resolvins E1 and D1 inhibit interstitial fibrosis in the obstructed kidney via inhibition of local fibroblast proliferation[J]. J Pathol, 2012,228(4):506-519.
[41] LANG F, VOELKL J. Therapeutic potential of serum and glucocorticoid inducible kinase inhibition[J]. Expert Opin Investig Drugs, 2013,22(6):701-714.
[42] SARKZI R, HAUSER C, NOPPERT S J, et al. Oncostatin M is a novel inhibitor of TGF-β1-induced matricellular protein expression[J]. Am J Physiol Renal Physiol, 2011,301(5):1014-1025.
[43] ZHONG J, ZHAO N B. Pathogenesis and differentiation of renal fibrosis collateral disease[J].J Nanjing Univ Tradit Chin Med(南京中医药大学学报), 2014,30(6):510-512.
[44] SALIBA Y, KARAM R, SMAYRA V, et al. Evidence of a role for fibroblast transient receptor potential canonical 3 Ca2+ channel in renal fibrosis[J]. J Am Soc Nephrol, 2014,26(8):1855-1876.
[45] WANG Y, WANG D H. Protective effect of TRPV1 against renal fibrosis via inhibition of TGF-β/Smad signaling in DOCA-salt hypertension[J]. Mol Med, 2011,17(11-12):1204-1212.

基金

国家自然科学基金资助项目(81270514,31401210,31571455);江苏省自然科学基金青年基金资助项目(BK20140955);江苏省高校自然科学研究面上项目(14KJB310011);2013年江苏高校优秀科技创新团队计划资助项目;江苏高校优势学科建设工程资助项目(ysxk-2010);南京市医学科技发展项目(YKK14143)
PDF(553 KB)

87

Accesses

0

Citation

Detail

段落导航
相关文章

/